The WRN exonuclease domain protects nascent strands from pathological MRE11/EXO1-dependent degradation.
نویسندگان
چکیده
The WRN helicase/exonuclease protein is required for proper replication fork recovery and maintenance of genome stability. However, whether the different catalytic activities of WRN cooperate to recover replication forks in vivo is unknown. Here, we show that, in response to replication perturbation induced by low doses of the TOP1 inhibitor camptothecin, loss of the WRN exonuclease resulted in enhanced degradation and ssDNA formation at nascent strands by the combined action of MRE11 and EXO1, as opposed to the limited processing of nascent strands performed by DNA2 in wild-type cells. Nascent strand degradation by MRE11/EXO1 took place downstream of RAD51 and affected the ability to resume replication, which correlated with slow replication rates in WRN exonuclease-deficient cells. In contrast, loss of the WRN helicase reduced exonucleolytic processing at nascent strands and led to severe genome instability. Our findings identify a novel role of the WRN exonuclease at perturbed forks, thus providing the first in vivo evidence for a distinct action of the two WRN enzymatic activities upon fork stalling and providing insights into the pathological mechanisms underlying the processing of perturbed forks.
منابع مشابه
DNA2 drives processing and restart of reversed replication forks in human cells
Accurate processing of stalled or damaged DNA replication forks is paramount to genomic integrity and recent work points to replication fork reversal and restart as a central mechanism to ensuring high-fidelity DNA replication. Here, we identify a novel DNA2- and WRN-dependent mechanism of reversed replication fork processing and restart after prolonged genotoxic stress. The human DNA2 nuclease...
متن کاملRelationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection.
Homologous recombination is a major pathway for repair of DNA double-strand breaks. This repair process is initiated by resection of the 5′-terminated strand at the break site. In yeast, resection is carried out by three nucleolytic complexes: Mre11-Rad50-Xrs2, which functions at the initial step and also stimulates the two processive pathways, Sgs1-Dna2 and Exonuclease 1 (Exo1). Here we invest...
متن کاملRad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation.
After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases...
متن کاملSgs1 Helicase and Two Nucleases Dna2 and Exo1 Resect DNA Double-Strand Break Ends
Formation of single-strand DNA (ssDNA) tails at a double-strand break (DSB) is a key step in homologous recombination and DNA-damage signaling. The enzyme(s) producing ssDNA at DSBs in eukaryotes remain unknown. We monitored 5'-strand resection at inducible DSB ends in yeast and identified proteins required for two stages of resection: initiation and long-range 5'-strand resection. We show that...
متن کاملExo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae.
The MRE11, RAD50, and XRS2 genes of Saccharomyces cerevisiae are involved in the repair of DNA double-strand breaks (DSBs) produced by ionizing radiation and by radiomimetic chemicals such as methyl methanesulfonate (MMS). In these mutants, single-strand DNA degradation in a 5' to 3' direction from DSB ends is reduced. Multiple copies of the EXO1 gene, encoding a 5' to 3' double-strand DNA exon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 43 20 شماره
صفحات -
تاریخ انتشار 2015